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Abstract. Vector spaces are algebraic structures which admit addition and
scalar multiplication. The scalar can come from any field. We wish to show

that to each vector space we may attach a unique nonnegative integer known

as its dimension, which is the size of any basis.

1. Fields

We begin by reviewing some aspects of the mathematical objects called fields.

Definition 1. A field is a set F , together with a pair of operations,

+ : F × F → F and · : F × F → F,

called addition and multiplication, satisfying
(F1) if a, b ∈ F , then a + b = b + a;
(F2) if a, b, c ∈ F , then (a + b) + c = a + (b + c);
(F3) there exists 0 ∈ F such that a + 0 = a for every a ∈ F ;
(F4) for every a ∈ F there exists −a ∈ F such that a + (−a) = 0;
(F5) if a, b ∈ F , then ab = ba;
(F6) if a, b, c ∈ F , then (ab)c = a(bc);
(F7) there exists 1 ∈ F r {0} such that a · 1 = a for every a ∈ F ;
(F8) if a ∈ F r {0} there exists a−1 ∈ F such that aa−1 = 1;
(F9) if a, b, c ∈ F , then (a + b)c = ac + bc.

We define two more operations: subtraction is an operator − : F×F → F defined
by a − b = a + (−b) for all a, b ∈ F , and division is an operator ÷ : F × F ∗ → F
defined by a÷ b = ab−1, where F ∗ = F r {0}

We give some examples of fields, beginning with the set of numbers emphasized
by calculus.

Example 1. The set R of real numbers is a field.

Example 2. The set Q of rational numbers is a field. It adheres to properties
(F1) through (F9), as does any subset of R; moreover, the operations are closed
on Q; the sum, difference, product, and quotient of two rational numbers is another
rational number.

A field is not required to be an ordered set.

Example 3. The set C of complex numbers is a field. One can show that C does
not admit a total ordering which is compatible with its algebraic structure.
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Neither is a field required to be infinite, and there are finite fields.

Example 4. Let Z2 = {0, 1}. Define addition and multiplication on Z2 by the
following tables:

+ 0 1 · 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Together with these operations, Z2 is a field.

Example 5. Let Z3 = {0, 1, 2}. Define addition and multiplication on Z3 by the
following tables:

+ 0 1 2 · 0 1 2
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

Together with these operations, Z3 is a field.

Let the symbol , mean ”is defined to be”.

Example 6. The previous examples are special cases of the fields Zp = {0, 1, . . . , p−
1}, where p is a prime integer, and addition and multiplication are performed mod-
ulo p. The multiplicative inverses of nonzero elements exist, and may be found
via the Euclidean algorithm, which produces the formula xm + yp = 1 when m is
relatively prime to p. The inverse of m in Zp is then the residue of x modulo p.

2. Subfields

Definition 2. Let E be a field. A subfield of E is subset F ⊂ E satisfying
(S0) F is nonempty;
(S1) if a, b ∈ F , then a + b ∈ F ;
(S2) if a ∈ F , then −a ∈ F ;
(S3) if a, b ∈ F , then ab ∈ F ;
(S4) if a ∈ F r {0}, then a−1 ∈ F .

We write F ≤ E to mean that F is a subfield of E.

Conditions (S0) through (S5) are necessary and sufficient for F to itself be a
field.

The fields we will deal with in this course are the subfields of C.

Example 7. Consider the subset of R given by

Q[
√

2] = {x ∈ R | x = a + b
√

2 | a, b ∈ Q}.
This is set clearly satisfies properties (S0) through (S3); for example, if x1 =
a1 + b1

√
2 and x2 = a2 + b2

√
2, then x1x2 = (a1a2 + 2b1b2) + (a1b2 + a2b1)

√
2,

which is of the correct form to be an element of Q[
√

2]. The multiplicative inverse
of a + b

√
2 is

1
a + b

√
2

=
a− b

√
2

(a + b
√

2)(a− b
√

2)
=

a

a2 − 2b2
+

−b

a2 − 2b2

√
2,

which is also in Q[
√

2]. Notice that it is impossible for nonzero rational numbers a
and b to satisfy a2 = 2b2.

Thus Q[
√

2] is a subfield of R, and as such, is itself a field.
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If C is a collection of sets, we denote the union and intersection of all the sets in
C by ∪C and ∩C, respectively; that is,

• ∪C , {c | c ∈ C for some C ∈ C};
• ∩C , {c | c ∈ C for all C ∈ C}.

Proposition 1. Let E be a field and let F be a collection of subfields of E. Then
∩F is a subfield of E.

Proof. We verify properties (S0) through (S4).
(S0) Every member of F contains 0, so ∩F contains zero.
(S1) Let a, b ∈ ∩F. Then a, b ∈ F for every F ∈ F. Since each F in F is a

subfield of E, a + b ∈ F for every F ∈ F. Thus a + b ∈ ∩F.
(S2) Let a ∈ ∩F. Then a ∈ F for every F ∈ F. Since each F in F is a subfield

of E, −a ∈ F for every F ∈ F. Thus −a ∈ ∩F.
(S3) Let a, b ∈ ∩F. Then a, b ∈ F for every F ∈ F. Since each F in F is a

subfield of E, ab ∈ F for every F ∈ F. Thus ab ∈ ∩F.
(S4) Let a ∈ ∩F be nonzero. Then a ∈ F for every F ∈ F. Since each F in F is

a subfield of E, a−1 ∈ F for every F ∈ F. Thus a−1 ∈ ∩F. �

Definition 3. Let F be a field and let A ⊂ F . The subfield of F generated by A,
denoted 〈A〉, is the intersection of all subfields of F which contain A.

Clearly, 〈A〉 is the smallest subfield of F which contains A.

Example 8. The subfield of R generated by the set {
√

2} is Q[
√

2].

Recall that a ring is a field without property (F8), and a subring is a a subfield
without property (S4). It is equally true that the intersection of a collection of
subrings of a given ring is itself a ring; the proof is identical, except you don’t need
to prove (S4), which doesn’t hold for subrings.



4

3. Vector Spaces

Definition 4. A vector space over a field F is a set V together with a pair of
operations,

+ : V × V → V and · : F × V → V,

called vector addition and scalar multiplication, satisfying
(V1) if x, y ∈ V , then x + y = y + x;
(V2) if x, y, z ∈ V , then (x + y) + z = x + (y + z);
(V3) there exists 0 ∈ V such that x + 0 = x for every x ∈ V ;
(V4) for every x ∈ V there exists −x ∈ V such that x + (−x) = 0;
(V5) 1 · x = x for every x ∈ V , where 1 ∈ F ;
(V6) if x, y ∈ V and a ∈ F , then a(x + y) = ax + ay;
(V7) if x ∈ V and a, b ∈ F , then (ab)x = a(bx);
(V8) if x ∈ V and a, b ∈ F , then (a + b)x = ax + bx.

Example 9. Let F = R and V = R. This is a vector space, where vector addition
is addition in R and scalar multiplication is multiplication in R.

Example 10. Let F = R and V = R2, the set of all ordered pairs of real numbers.
For x = (x1, x2), y = (y1, y2) ∈ R2, define vector addition by x+y = (x1+y1, x2+y2)
and scalar multiplication by ax = (ax1, ax2). Then V is a vector space over R.

Example 11. Let F be any field, and n ∈ N. Let Fn denote the set of all or-
dered n-tuples of elements from F . Define vector addition and scalar multiplication
componentwise:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y2, . . . , xn + yn)

and
a(x1, . . . , xn) = (ax1, . . . , axn),

where x1, . . . , xn, y1, . . . , yn, a ∈ F . Then Fn is a vector space over F .

Example 12. Let Pn denote the set of all polynomial functions with real coeffi-
cients of degree less than or equal to n. Then Pn is a vector space over R under
polynomial addition and multiplication by a scalar.

Example 13. The field Q[
√

2] is a vector space over Q in the natural way.

Example 14. Let F(R) denote the set of all function f : R → R. Then F)(R) is a
vector space over R with function addition and scalar multiplication.

Example 15. Let E be a field and let F be a subfield of E. Then E is a vector
space over F , with vector addition as field addition in E, and scalar multiplication
as multiplication (in E) of an element in F times an element in E.
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4. Subspaces

Definition 5. Let V be a vector space over a field F . A subspace of V over F is a
subset W ⊂ V such that
(W0) W is nonempty;
(W1) x, y ∈ W implies x + y ∈ W ;
(W2) x ∈ W and a ∈ F implies ax ∈ W .
We write W ≤ V to mean that W is a subspace of V (where F is understood).

Conditions (W0) through (W2) are necessary and sufficient for W to itself be
a vector space over F . Note that in the presence of (W1) and (W2), (W0) is
equivalent to the statement that the zero vector in W . This is because if W is
nonempty by (W0), then w ∈ W for some w ∈ V , so by (W2), −w ∈ W , and
then by (W1), 0 = w + (−w) ∈ W .

Proposition 2. Let V be a vector space over a field F and let W be a collection
of subspaces of V over F . Then ∩W is a subspace of V over F .

Proof. We show that ∩W satisfies properties (W0) through (W2).
(W0) Every member of W is a subspace, and so it contains the zero vector.

Thus the zero vector is in the intersection of all the subspaces in W.
(W1) Let w1, w2 ∈ ∩W. Then w1, w2 ∈ W for every W ∈ W. Thus w1+w2 ∈ W

for every W ∈ W, because W is a subspace. Therefore w1 + w2 ∈ ∩W.
(W2) Let w ∈ ∩W. Then w ∈ W for every W ∈ W. Thus −w ∈ W for every

W ∈ W, because W is a subspace. Therefore −w ∈ ∩W. �

Definition 6. Let V be a vector space over a field F and let X ⊂ V . The subspace
of V over F generated by X, denoted 〈X〉, is the intersection of all subspaces of V
over F which contain X.

Clearly, 〈X〉 is the smallest subspace of V over F which contains X, where F is
understood from the context. We may write 〈X〉F if the field is ambiguous.

Example 16. The set Q[
√

2] is the subspace of R over Q generated by the set
{
√

2}.

Example 17. The set Pn of all polynomials over R with degree less than or equal
to n is the subspace F, the set of all functions f : R → R, which is generated by
the set X = {1, x, x2, . . . , xn}.
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5. Span

Definition 7. Let V be a vector space over a field F and let X ⊂ V . A linear
combination from X over F is an expression of the form

m∑
i=1

aixi where a1, . . . , an ∈ F and x1, . . . , xm ∈ X.

Note that a linear combination from X represents an element of V .

Definition 8. Let V be a vector space over a field F and let X ⊂ V . The span of
X over F is

spanX = {x ∈ V | x can be expressed as a linear combination from X}.
If Y = span X, we say that X spans Y .

Again, the field F is understood in the notation span(X). We may write
spanF (X) if the field is ambiguous.

Proposition 3. Let V be a vector space and let X ⊂ V . Then spanX = 〈X〉.

Proof. Since 〈X〉 is a subspace of V which contains X, it certainly contains all linear
combinations of elements from X; that is, span X ⊂ 〈X〉. On the other hand, one
sees that span X is closed under vector addition and scalar multiplication, so it is
itself a subspace of V which contains X; thus 〈X〉 ⊂ spanX. �

Proposition 4. Let V be a vector space and let X, Y ⊂ V .
If X spans V and X ⊂ Y , then Y spans V .

Proof. Suppose that X spans V . Then every element of V is a linear combination
of elements from X. But since X ⊂ Y , all such linear combinations are also linear
combinations from Y . Thus Y spans V . �
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6. Linear Independence

Definition 9. Let V be a vector space over a field F , and let X ⊂ V . We say that
X is linearly independent over F if

m∑
i=1

aixi = 0 implies ai = 0 for all i = 1, . . . ,m,

where x1, . . . , xm ∈ V are distinct and a1, . . . , am ∈ F . Otherwise, we say that X
is linearly dependent.

A true equation of the form
∑m

i=1 aixi = 0, where ai ∈ F and xi ∈ V for all i
between 1 and m, is called a dependence relation among the elements x1, . . . , xm.
It is a trivial dependence relation if all of the ai’s are equal to zero. Otherwise, it
is a nontrivial dependence relation. A set is linearly independent if and only if it
does not admit a nontrivial dependence relation.

Proposition 5. Let V be a vector space and let X, Y ⊂ V .
If Y is independent and X ⊂ Y , then X is independent.

Proof. Any nontrivial dependence relation among the elements of X would be a
nontrivial dependence relation among the elements of Y . �

7. Basis

Definition 10. Let V be a vector space over a field F , and let X ⊂ V . We say
that X is a basis for V over F if
(B1) X spans V over F ;
(B2) X is linearly independent over F .

Lemma 1. Let V be a vector space and let X ⊂ V be a spanning set.
If v ∈ V r X, then Y = X ∪ {v} is dependent.

Proof. If v = 0, then 1 · v = 0 is a nontrivial dependence relation from Y , so
Y is dependent; thus we may assume that v 6= 0. Since X spans, we may write
v =

∑m
i=1 aixi for some ai ∈ R and xi ∈ X. Not all of the ai’s are zero, because

v 6= 0. Let xm+1 = v and am+1 = −1; then
∑m+1

i=1 aixi = 0 is a nontrivial
dependence relation from Y . Thus Y is dependent. �

Lemma 2. Let V be a vector space and let X = {x1, . . . , xn} be a dependent
set. Then there exists k ∈ {1, . . . , n} such that xk is a linear combination from
{x1, . . . , xk−1}.

Proof. Since X is dependent, there is a nontrivial dependence relation
n∑

i=1

aixi = 0,

where not all ai’s equal zero. Let k be the largest integer between 1 and n such
that ak 6= 0. Then

xk =
1
ak

k−1∑
i=1

aixi

is a linear combination of the preceding elements. �
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Theorem 1. Let V be a vector space over a field F , and let X, Y ⊂ V be finite
subsets of V . If X is linearly independent over F and Y spans V over F , then

|X| ≤ |Y |.

Proof. Let |Y | = n and Y = {y1, . . . , yn}.
By way of contradiction (BWOC), suppose that |X| > n and let

Z = {z1, . . . , zn+1} ⊂ X;

then Z is independent by Proposition 5. Label the elements of Y and Z so that all
of those contained in Y ∩ Z are in the front, with yi = zi for all i ≤ j:

Y = {z1, . . . , zj , yj+1, . . . , yn}.
By Lemma 1, the set

{z1, . . . , zj+1, yj+1, yk+2, . . . , yn}
is dependent. By Lemma 2, one of these vectors is dependent on the preceding
ones, and since the z′is are linearly independent, there exists k ∈ {j +1, . . . , n} such
that yk is a linear combination of {z1, . . . , zj+1, yj+1, . . . , yk−1}. Thus if we remove
yk from the set, it will still span:

span{z1, . . . , zi+1, yi+1, . . . , yk−1, yk+1, . . . , yn} = V.

Continuing in this way, adding the next z and removing a y, we see that after
n− j replacements we have

span{z1, . . . , zn} = V.

Thus the set Z = {z1, . . . , zn} ∪ {zn+1} is dependent by Lemma 1, producing a
contradiction. �

Corollary 1. Let V be a vector space over a field F , and let X, Y ⊂ V be finite
bases of V over F . Then

|X| = |Y |.

Proof. Since X and Y are basis, each spans and is independent. Since X is inde-
pendent and Y spans, we have |X| ≤ |Y |. But also, Y is independent and X spans,
so |Y | ≤ |x|. The result follows. �

If we know that V is spanned by a finite set, we can use Lemma 2 to throw out
one superfluous vector at a time, until we arrive at a spanning set which is also
independent. This is a basis for V . Thus, in this case, V has a basis.

Definition 11. Let V be a vector space over a field F . The dimension of V over
F is the cardinality of any basis for V over F .
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